Persamaan garis lurus
Matematika
adiputrapratama1945
Pertanyaan
Persamaan garis lurus
1 Jawaban
-
1. Jawaban Nabeella
Persamaan Garis Lurus bentuk umum ( y = mx )
-> persamaan yang melalui titik pusat ( 0 , 0 ) dan bergradien m .
Contoh :
Tentukan persamaan garis lurus yang melalui titik pusat ( 0 , 0 ) dan bergradien 2 !
Jawab : y = mx
y = 2 x
2. y = mx + c
->Persamaan garis yang / / dengan y = mx dan bergradien m .
-> Persamaan garis yang melalui titik ( 0 , c ) dan bergradien m . ( 0 , c ) adalah titik potong sumbu y .
3. Persamaan Garis Lurus Yang Melalui titik ( x1 , y1 ) dan bergradien m .
persamaannya yaitu :
y – y1 = m ( x – x1 )
4. Persamaan Garis Lurus Yang Melaui Dua titik yaitu ( x1 , y 1 ) dan ( x2 , y2 ) .

Contoh Soal
Tentukan Gradien garis yang melalui titik ( 0 , 0 ) dengan titik A ( -20 , 25 )Tentukan Gradien garis yang melalui titik A ( -4 , 7 ) dan B ( 2 , -2 )Tentuka Gradien garis dengan persamaan garis 4x + 5y – 6 = 0Tentukan persamaan garis lurus yang melalui pusat koordinat dan bergradien – 4/5Persamaan garis lurus yang melalui titik ( 0 , -2 ) dan m = 3/4 adalah . . .Tentukan persamaan garis G yang melalui garis ( 0 , 4 ) dan sejajar dengan garis H yang melalui titik pusat koordinat dan titik ( 3 ,2 )Tentukan persamaan garis Z yang melalui titik ( 4 , 5 ) dan ( -5 , 3 )
Penyelesaian
Diketahui : Titik ( 0 , 0 ) dan Titik A ( -4 , 7 )
Ditanya : m = . . .?
Jawab :
m = b / a
= 25 / -20
= – 5/4
2.Diketahui : Titik A ( -4 , 7 ) dan TitikB ( 2 , -2 )
Ditanya : m = . . ?
Jawab :
m= y1 – y2 / x1 – x2
m = 7 – ( -2) / -4 -2
m = 9 / -6
m = – 3/2
3. Diketahui : persamaan 4x + 5y – 6 = 0
Ditanya : m = . . .?
m = -a / b
= -4 / 5
4.Diketahui :
titik pusat koordinat ( 0 , 0 )
m = -4/5
Ditanya : persamaan garis lurus = . . .?
Jawab :
y = mx
y = -4 / 5 x
-4y = 5x
-4y -5y = 0
<-> 4y + 5y = 0
5. Diketahui :
titik garis ( 0 , -2 )
m = 3 / 4
Ditanya :
Persamaan garis = . . .?
Jawab :
cara 1
y = mx + c
y = 3/4 x + ( -2 ) x4
< => 4y = 3x – 8
< = > -3x + 4y + 8 = 0
cara 2
y – y1 = m ( x – x1 )
y – ( -2 ) = 3/4 ( x – 0 )
y + 2 = 3/4 x x4
< = > 4y + 8 = 3x
< = > -3y + 4y + 8
6. Diketahui :
Titik koordinat ( 0 , 0 ) dan titik ( 3 , 2 )
Ditanya : Persamaan garis G = . . .?
Jawab :
Langkah pertama kita tentuka gradiennya terlebih dahulu , yaitu :
m = y2 – y1 / x2 – x1
= 2 – 0 / 3 – 0
= 2/ 3
Karena Garis G // H , maka gradiennya adalah 2/3 DAN Melalui titik ( 0 , 4 ) , maka persamaan garisnya adalah :
y = mx + c
y = 2 / 3 x + 4 x3
< = >3y = 2x + 12
< = > 3y – 2x – 12 = 0
< = > 2x – 3y + 12 = 0
7. Diketahui : titik A ( 4 , 5 )
titik B ( -5 , 3 )
Ditanya : Persamaan garis Z = . . .?
Jawab :
Cara 1
Langkah pertama yaitu mencari gradien terlebih dahulu :
m = y1 – y2 / x1 – x2
= 5 – 3 / 4 – ( -5 )
= 2 / 9
Selanjutnya yaitu memasukkan ke dalam rumus :
Persamaan garis melalui titik ( 4 , 5 ) dan bergradien 2 / 9
y – y1 = m ( x – x1 )
y – 5 = 2/9 ( x – 4 )
y – 5 = 2/9x – 8/ 9
y = 2/9 x – 8 / 9 + 5
y = 2/9 x – 8/9 + 45 /9
y = 2/9x – 37 / 9
Cara 2
Tanpa mencari gradien, yaitu dengan cara

y – 5 / 3 – 5 = x – 4 / -5 – 4
y – 5 / -2 = x – 4 / -9
-9 ( y – 5 ) = -2 ( x – 4 )
-9y + 45 = -2x + 8
-9y + 2x +45 – 8 = 0
2x – 9y + 37 : 9
< = > 2/9 x – y + 37 / 9
< = > y = 2/9x + 37 / 9