Diketahui x1 dan x2 merupakan akar-akar persamaan x^2 +5x+a= 0 Dengan x1 dan x2 kedu-duanya tidak sama dengan 0. Jika x1 ,2x2 dan -3x1.x2 masing2 merupakan suku
Matematika
yustofebri
Pertanyaan
Diketahui x1 dan x2 merupakan akar-akar persamaan x^2 +5x+a= 0
Dengan x1 dan x2 kedu-duanya tidak sama dengan 0. Jika x1 ,2x2 dan -3x1.x2 masing2 merupakan suku pertama kedua dan ketiga dari deret geometri dengan rasionpositif maka nila a?
Dengan x1 dan x2 kedu-duanya tidak sama dengan 0. Jika x1 ,2x2 dan -3x1.x2 masing2 merupakan suku pertama kedua dan ketiga dari deret geometri dengan rasionpositif maka nila a?
1 Jawaban
-
1. Jawaban MakotoDaiwa
diketahui bahwa:
x1+x2 = -b/a
x1+x2 = -5/1 = -5
juga diketahui bahwa:
x1.x2 = c/a = a/1 = a , ( kedua a disini berbeda ya :D )
di soal, dinyatakan bahwa x1, 2x2, -3x1.x2 merupakan suku 1,2,3 dr suatu deret geo rasio positif.
x1x2 = a, maka -3x1x2=-3a
x1x2 = a, maka x1 = a/x2
x1 + x2 = -5
maka x2 = -5-x1
maka x1 = a/(-5-x1)
maka suku-1,2,3:
u1 = a/(-5-x1)
u2 = 2*(-5-x1)
u3 = a
diketahui sifat deret:
u3/u2 = u2/u1
maka
a/(2*(-5-x1)) = 2*(-5-x1)/(a/(-5-x1))
a^2 = 2*(-5-x1)*2*(-5-x1)(-5-x1)
a=2*(-5-x1)V(-5-x1)
maaf sampai situ saja, saya agak lupa 1 konsep lagi agar bisa dapat nilai x1, maaf karena tidak bisa membantu :(